摘要
针对强噪声环境下频谱感知方法计算复杂度高、难以获取大量标注样本、检测准确率低等问题,该文提出由图像去噪和图像分类思想驱动的频谱感知方法(IDCSS)。首先,对感知用户的接收信号进行时频变换,将无线电数值信号转换为图像。强噪声环境下感知用户接收信号图像与噪声图像相关度高,因此搭建生成对抗网络(GAN)来增加低信噪比下接收信号样本的数量,提高图像的质量。在生成器中,利用残差-长短时记忆网络取代生成网络U-Net结构中的跳跃连接,对图像进行去噪、提取感知用户接收信号图像的多尺度特征、建立基于熵的损失函数来构建网络的抗噪能力;在判决器中,设计适用无线电图像信号的多维度判决器来增强生成图像的质量、保留低信噪比感知用户信号的图像细节。最后利用分类器识别频谱占用状态。仿真结果表明,与现有频谱感知算法相比,所提算法具有较好的检测性能。
- 单位