摘要

为了有效提高推荐算法的精确度,提出了一种适用于个性化图书推荐的改进隐含狄利克雷分配(Latent Dirichlet Allocation,LDA)用户兴趣模型。首先在借阅者-借阅者评分矩阵的基础上,通过增加借阅者特征信息相似度计算和借阅者-图书属性相似度计算,对图书内容相似度计算方法进行了改进。然后采用LDA主题挖掘模型来实现个性化图书推荐,并给出了相应的参数估计过程。实验结果显示:相比传统算法,提出的算法具有较高的准确度,能有效对图书进行挖掘,为借阅者推荐个性化和潜在感兴的书籍。

  • 单位
    晋中职业技术学院