基于改进YOLOv5与CRNN的电表示数识别

作者:黄辉; 肖豪*; 王琼瑶; 吴建强; 梁志龙
来源:电子测量技术, 2023, 46(01): 173-180.
DOI:10.19651/j.cnki.emt.2210303

摘要

为了提高电表示数检测和识别的准确率,基于轻量高效的YOLOv5s网络提出了改进的目标检测网络。首先,在特征提取阶段添加CBAM注意力机制对图像的重要特征进行自主学习,并设计了一种特征融合网络D-BiFPN加强了对深层特征的提取;其次,引入CIOU损失函数,使目标框的回归更加稳定。对CRNN文本识别算法的主干网络进行改进,模型保持轻量化的特点,在移动端部署上有良好的前景。最后,在电表数据集上测试得出:相比于YOLOv5算法,所提出的算法精度均值提升了5.13%;相比于CRNN算法,所提出的文本识别算法准确率提升了7.4%。实验结果表明,改进后的文本检测算法对电表示数的检测精度较高,文本识别算法准确率和速度较高,满足电表示数检测识别的实际应用需求。

全文