融合主题模型和动态路由的小样本学习方法

作者:张淑芳; 唐焕玲*; 郑涵; 刘孝炎; 窦全胜; 鲁明羽
来源:数据采集与处理, 2022, 37(03): 586-596.
DOI:10.16337/j.1004-9037.2022.03.009

摘要

针对小样本学习标注训练样本过少,导致特征表达力弱的问题,本文结合有监督主题模型(Supervised LDA,SLDA)和动态路由算法提出一种新的动态路由原型网络模型(Dynamic routing prototypical network based on SLDA,DRP-SLDA)。利用SLDA主题模型建立词汇与类别之间的语义映射,增强词的类别分布特征,从词粒度角度编码获得样本的语义表示。提出动态路由原型网络(Dynamic routing prototypical network,DR-Proto),通过提取交叉特征利用样本之间的语义关系,采用动态路由算法迭代生成具有类别代表性的动态原型,旨在解决特征表达问题。实验结果表明,DRP-SLDA模型能有效提取词的类别分布特征,且获取动态原型提高类别辨识力,从而能够有效提升小样本文本分类的泛化性能。

全文