研究一类具有阶段结构与随机扰动的酗酒模型,分析饮酒平衡点附近的随机扰动.通过建立Lyapunov函数及应用伊藤公式,证明饮酒平衡点附近的随机全局渐近稳定性.当确定性模型基本再生数R0>1,随机模型的解是平均持续的,说明饮酒行为持续存在.另外,饮酒的传播率,自然死亡率及复发率对饮酒平衡点附近的随机全局渐近稳定性起着决定性作用.