摘要

传统的医学图像分割网络存在分割精度低、图像信息易丢失、分割轮廓不清晰等问题。为提高医学图像分割准确率,提出一种结合胶囊网络与U-Net的多标签图像分割网络UCaps。以U-Net网络为架构,基于胶囊网络原理设计适用于胶囊网络的上采样算法,通过结合高斯混合模型作为聚类算法的EM路由算法聚合底层特征对高层特征的推导过程,使高层特征包含底层特征信息,同时底层特征间的位置、姿态等信息具有统一性。实验结果表明,相比U-Net、SegCaps、MaVec-Caps网络,UCaps网络的平均分割准确率为93.21%,其中左肺分割准确率达到98.24%,具有较高的图像分割准确率和较快的收敛速度。

全文