摘要
针对滤波和优化融合算法在不同场景下定位性能不明确的问题,该文构建了一种融合先验点云地图、激光雷达(LiDAR)、惯性测量单元(IMU)的位姿估计框架。对比分析了基于图优化和误差状态卡尔曼滤波(ESKF)两种算法的位姿估计精度,并采用3组KITTI数据进行实验分析。结果表明:图优化算法的绝对位姿误差的均方根小于ESKF算法,3组数据的精度分别提升了28.9%、12.5%和21%;在复杂场景下,基于图优化算法的性能高于滤波算法;在简单场景下,滤波和图优化算法的精度接近,而滤波算法更加稳定。
-
单位信息工程大学; 武汉大学