摘要
论文提出了一种基于火焰视频序列采用卷积-循环神经网络分析回转窑烧结工况的新方法。现方法以单帧静态火焰图像为输入,易受噪声影响,识别准确率低,而视频序列蕴含的信息更加全面,能够更准确的反映工况变化。该方法首先针对图像序列数据处理和主成分分析法(Principal Component Analysis, PCA)初步特征提取,之后应用卷积-循环神经网络的集成网络进一步学习图像空间和时间维的特征表达,并得到识别结果。利用随机搜索对网络进行超参数优化,进而获得最优的神经网络模型。最后,对卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(RecurrentNeuralNetwork,RNN)和CNN-RNN(ConvolutionalRecurrent Neural Network, CNN-RNN)网络在两种数据集下的效果进行了比较,实验结果表明所提出的卷积-循环神经网络集成网络提高了回转窑烧结工况识别率。
-
单位东北大学; 流程工业综合自动化国家重点实验室