摘要
冬小麦叶面积指数(leaf area index,LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines,LS-SVM)方法和高光谱数据对不同条件下冬小麦LAI的估算能力。在用主成分分析法(principal component analysis,PCA)对PHI航空数据降维的基础上,利用实测LAI数据和高光谱反射率数据,构建LS-SVM模型,采用独立变量法,分别估算不同株型品种、不同生育时期、不同氮素和水分处理条件下的冬小麦LAI,并与传统NDVI模型反演结果对比。结果显示,每种条件下的LS-SVM模型都具有比NDVI模型更高的决定系数和更低的均方根误差值,即反演精度高于相应的NDVI模型。NDVI模型对不同株型品种、不同氮素和水分条件下冬小麦LAI估算精度不稳定,LS-SVM则表现出较好的稳定性。表明LS-SVM方法利用高光谱反射率数据对于不同条件下的冬小麦LAI反演具有良好的学习能力和普适性。
- 单位