摘要

本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017—2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深度生成模型、迁移学习以及一些高效特征提取网络3个方面进行全面剖析。首先,探讨了以GAN(generative adversarial network)和VAE(variational autoencoder)及其衍生结构在遥感技术中分类、变化检测上的应用;然后,在基于知识复用的辅助训练策略——迁移学习中主要从基于网络的迁移和基于数据结构的迁移两大类应用展开讨论;最后探讨了结合半监督学习和主动学习等思想的深度学习算法以及一些新颖的网络结构的应用。虽然深度学习在遥感技术领域发挥了极大的优势,性能也普遍超过了浅层的学习器,但结合物理模型的分析和高性能的实用性遥感应用仍需进一步发展与研究。