摘要

一般来说,基于二次近似模型的优化算法具有良好的数值表现.然而,当基于二次近似模型的优化算法求解大规模优化问题时,若使用稠密矩阵近似目标函数在迭代点的Hessian矩阵,需要花费大量的计算成本和存储成本,因此设计Hessian矩阵合适的标量近似矩阵特别重要.对于正则化模型,利用最近三次迭代的信息,设计粗糙的标量矩阵,使用拟牛顿公式进行更新,结合近似最优梯度法的思想和梯度法的延迟策略,构造Hessian矩阵新的含有更多二阶信息的标量近似矩阵.结合非单调线搜索,提出基于新的Hessian近似矩阵的稀疏重构算法,并进行收敛性分析.实验结果表明,与经典稀疏重构算法算法相比,基于新的Hessian近似矩阵的稀疏重构算法在重构效果相似的情况下能较大地减少迭代次数和较快地重构信号.