摘要
随着互联网技术的不断发展以及网络规模的不断扩大,应用的类别纷繁复杂,新型应用层出不穷。为了保障用户服务质量(Qo S)并确保网络安全,准确快速的流量分类是运营商及网络管理者亟须解决的问题。首先给出网络流量分类的问题定义和性能指标;然后分别介绍基于机器学习和基于深度学习的流量分类方法,分析了这些方法的优缺点,并对现存问题进行阐述;接着围绕流量分类线上部署时会遇到的3个问题:数据集问题、新应用识别问题、部署开销问题对相关工作进行阐述与分析,并进一步探讨目前网络流量分类研究面临的挑战;最后对网络流量分类下一步的研究方向进行展望。
- 单位