NIR光谱法快速预测小麦籽粒干物质含量

作者:何鸿举*; 王玉玲; 乔红; 欧行奇; 刘红; 王慧; 蒋圣启; 王魏
来源:海南师范大学学报(自然科学版), 2019, 32(01): 33-38.

摘要

通过采集百农201、百农207、百农307、百旱207、AK-58、冠麦1号、周麦18等7个不同品种完整小麦籽粒的近红外光谱(900~1700 nm)信息,经高斯滤波平滑(Gaussian Filtering Smoothing,GFS)、标准化校正(Normalization Correction)和卷积平滑(Savitzky-Golay Convolution Smoothing,SGCS)三种预处理后,利用偏最小二乘回归(Partial Least Squares Regression,PLSR)算法寻找光谱信息与小麦籽粒干物质含量之间的定量关系。结果显示,经GFS预处理的近红外光谱(100个波长)构建的全波段PLSR模型(PLSR)预测相关系数(RP)为0.952,预测误差(RMSEP)为0.158%,RMSEC与RMSEP绝对值差(ΔE)为0.082,预测效果优于其他两种预处理光谱。从GFS光谱中经PLSR-β法筛选获得17个最优波长,构建的优化模型(O-PLSR)RP为0.928,RMSEP为0.191%,ΔE为0.049,其预测效果接近于PLSR模型。试验表明,利用900~1700 nm光谱可被潜在用于快速无损预测小麦籽粒干物质含量。