摘要

针对目前机场鸟类目标检测模型存在实时检测效率低和在嵌入式设备中难以部署的问题,提出了一种基于改进YOLOv4的轻量级小目标快速检测方法 E-Y-slim。首先,将轻量化的EfficientNet-B0作为模型的特征提取网络,降低网络参数量和计算复杂度,提高检测速度;然后,裁剪特征融合网络中部分卷积层,并将检测层中标准卷积改为深度可分离卷积,进一步提升检测速度;最后,加入空间金字塔池化(SPP)结构以及交并比(IoU)预测分支,在保持算法检测效率情况下,提升算法检测精度。所提方法在PASCAL VOC鸟类数据集上平均精度(AP)为75.2%,检测速度达到50帧/秒,相较于YOLOv4的AP下降了7个百分点,但检测速度提升了42.9%。在实际机场鸟类数据集上AP为75.0%,检测速度达到49帧/秒,在AP相当的情况下,与YOLOv4相比模型参数量减少91.1%,检测速度提升了63.3%。实验结果表明,E-Y-slim能够满足在嵌入式设备上对机场鸟类活动目标快速检测的需求。