摘要
燃煤电站的NOx排放是造成大气污染的主因之一,准确测定SCR入口处的NOx浓度对控制NOx排放具有重要意义。针对燃煤过程中的高维参数变量,提出基于随机子空间的集成深度信念网络预测算法。利用偏最小二乘法对现场数据进行特征提取并计算方差解释度;根据方差解释度进行随机子空间划分,建立输入样本在不同方向上的投影子空间,在各个子空间训练相同结构的基学习器;最后,通过BP神经网络进行集成。以660 MW超超临界直流燃煤锅炉为研究对象,进行仿真实验,结果与常用NOx排放预测模型进行对比,表明所提预测模型有良好的提升效果。
- 单位