摘要

憎水性等级(HC)是衡量绝缘子性能的重要指标之一。在实际环境的多种因素作用下绝缘子伞裙表面存在局部憎水性差异,为了准确识别绝缘子的性能,本文提出了一种基于深度学习的局部自适应绝缘子检测与憎水性分类模型。首先,通过绝缘子分割模块分离绝缘子与背景区域,为后续针对绝缘子区域的操作提供分割信息;然后将绝缘子区域划分为固定大小的图像块,在缩小分辨率减小运算难度的同时保留了绝缘子表面的细节信息;最后通过憎水性分类模块分析图像块内绝缘子的憎水性。实验使用巡检维护现场的绝缘子图片作为样本集,分阶段构建模型,分别对分割阶段和憎水性分类阶段的准确性进行评估。实验结果显示分割阶段模块能有效识别绝缘子和背景区域,交叉验证的测试集准确率均大于97.21%,并且憎水性分类阶段模块能准确分析绝缘子憎水性,对140幅测试图片的识别准确率达到98.65%。经过实验证明本文提出的模型在复杂自然环境中检测绝缘子性能是一种有效的解决方案。

全文