摘要

针对现有协同过滤方法对用户与商品的潜在信息挖掘不全面的问题,提出了一种基于多特征融合和外积神经协同过滤的个性化商品推荐方法。该方法分别采用多层感知器和卷积神经网络提取用户与商品之间的交互关系矩阵,充分利用拼接方法和外积运算的互补性,提高了对用户与商品关系的表征能力。利用外积神经协同过滤模型提升模型稳定性和拓展性。亚马逊公开数据集的测试结果表明,与原有单一特征的推荐模型相比,多特征融合能够有效提高商品评分预测性能,且推荐性能优于现有协同过滤方法。