摘要
为提高径流时间序列预测精度,减少计算规模,基于“分解-预测-重构”思想,提出小波包分解(WPD)-金枪鱼优化(TSO)算法-极限学习机(ELM)组合预测模型,并应用于云南省龙潭站、革雷站月径流预测。结果表明,TSO算法具有较好的寻优精度和全局搜索能力,寻优精度优于HHO、GWO、SFO、PSO算法。WPD-TSO-ELM模型对实例龙潭站、革雷站月径流预测的平均绝对百分比误差分别为0.175%、0.121%,预测误差小于WPD2-TSO-ELM模型,较WPD1-TSO-ELM、SSA-TSO-ELM、VMD-TSO-ELM模型降低1个数量级以上。WPD-TSO-ELM模型预测精度高、计算规模小,是一种简洁高效的径流时间序列预测模型。