摘要
为解决硬件平台资源受限条件下精准实现脑肿瘤区域分割的需求,提出一种基于ShuffleNet的多尺度高效脑肿瘤分割网络。首先以ShuffleNet为基础构建深层特征提取网络,并加入多路平行卷积层和混合感受野增强网络的多尺度信息提取能力;其次,使用深度可分离卷积降低网络的参数量;最后提出一种加权混合损失函数缓解了数据类别不平衡对脑肿瘤分割的影响,提高了网络分割的稳定性。实验选取BraTS2019数据集进行训练和验证,并在BraTS2021临床病人数据集上进行临床测试。结果表明,所提的深层轻量级网络大幅度降低了参数量和计算量,同时具有较高的分割精度,且在增强肿瘤区域的分割问题上有更好的表现。
- 单位