摘要
为了提高刀具磨损在线监测的精度和泛化性能,提出一种基于卷积神经网络的刀具磨损量在线监测模型。利用时域传感器信号对刀具磨损量进行定量分析,避免数据预处理带来的信息丢失;采用深度网络自适应地提取特征,取代传统的人工特征提取过程,并通过加深网络进一步挖掘信号中隐藏的微小特征。实验结果表明,该模型对刀具后刀面磨损量监测效果较好,可以有效避免人为特征提取的局限,精度和泛化性都有一定程度的提高。与相关研究的对比也证实了其可行性和有效性。
-
单位工业和信息化部; 西北工业大学