摘要

癌症已经被广泛认为是高度异质性的疾病,癌症的早期诊断、分型和预后已成为癌症研究的关注重点。在大数据时代,对海量癌症生物医学数据进行高效的数据挖掘是生物信息学面临的重要挑战。自编码器(Autoencoder)作为神经网络的一种典型模型,能够通过无监督的方式高效地学习输入数据的特征,进而对生物数据进行整合与挖掘。文中首先介绍了自编码器模型结构并阐述其工作流程,之后结合多种类型的生物医学数据总结自编码器在癌症信息学研究领域的进展,并展望其发展趋势及应用方向。

全文