摘要
随着数据科学研究的不断深入,异常数据对数据分析工作的干扰也越来也大,如何有效检测异常数据已成为数据研究的关键问题之一。目前传统基于距离的方法仅考虑单个对象的异常性,缺少对正常对象之间如何抱团的分析,针对此问题,论文提出了一种基于邻近性(Proximity)和团(Clique)的异常检测算法——PCOD(Proximity Cliques Outlier Detection)算法。该算法引入了图论中团的概念,通过团来解释正常对象之间的连接,根据数据对象间的连接性来分析数据点是否为异常点。PCOD算法主要包括两个步骤:首先,根据数据对象之间的邻近性,将数据中各个对象表示为存在边的无向图;再递归搜索图获取所有团集合,对所有的团进行分析并检测出没有抱团的异常点。最后,使用Arrhythmia、Pima、Vowel等UCI数据集进行实验,实验结果表明PCOD算法在精确率方面优于同类异常检测算法。
- 单位