摘要
针对容积积分卡尔曼滤波(CQKF)受模型不确定性影响较大及需要精确已知噪声统计特性的缺点,提出了一种自适应强跟踪CQKF算法。该算法根据强跟踪滤波原理,引入渐消因子调整状态预测协方差矩阵,强迫残差序列正交,有效抑制了模型不确定性引起的滤波发散。在滤波过程中,利用Sage-Husa时变噪声统计估值器对过程噪声及量测噪声实时估计,提高了算法在未知时变噪声环境下的滤波精度。目标跟踪仿真实验验证了算法的有效性和鲁棒性。
-
单位中国人民解放军陆军工程大学