摘要

针对现有的绝缘子缺陷检测深度神经网络模型规模大、计算资源消耗高、检测精度低,难以部署在边缘端,本文基于通道剪枝和YOLOv5s方法提出具有非对称卷积和注意力机制的轻量级绝缘子缺陷检测模型ACAM-YOLOv5s。ACAM-YOLOv5s模型采用非对称卷积模块ACBlock替换YOLOv5s骨干网络残差结构中的标准卷积,并结合通道和空间混合的注意力CBAM进行特征融合,以增强骨干网络的表达能力、特征提取能力以及鲁棒性。引入对边界框大小和位置灵敏性高的PIoU作为定位回归损失,解决绝缘子纵横比高导致缺陷检测定位准确率低的问题。基于BN层通道剪枝方法对ACAM-YOLOv5s模型进一步稀疏化训练、剪枝和微调,得到轻量化缺陷检测模型。实验结果表明,剪枝后的ACAM-YOLOv5s模型和原始YOLOv5s相比,在检测精度、计算量和模型体积方面,具有相对优势,能够满足边缘设备部署的需求,在无人机航拍绝缘子缺陷检测领域具有潜在价值。

全文