摘要
针对目前支持向量机(SVM)参数选择的盲目性,结合遗传算法GA的并行搜索和模拟退火算法SA的概率突跳特性,提出一种改进的基于遗传退火算法(GASA)混合策略优化支持向量机惩罚函数和核函数参数的GASA-SVM算法。利用柴油机供油系统油压波形的实测数据,归一化处理后作为诊断模型的特征值,建立了基于GASA-SVM的柴油机供油系统故障诊断模型。通过与BP神经网络、RBF神经网络、SVM和GA-SVM故障诊断模型比较表明:应用GASA-SVM建立的故障诊断模型在故障识别准确性上优于其它网络模型,能够有效进行柴油机供油系统的故障诊断。
- 单位