摘要

传统交通标志检测方法检测速度慢,且现有深度神经网络对小尺寸交通标志检测精度低。对此提出一个基于YOLOv3的新型端到端卷积神经网络。以YOLOv3为检测框架,对特征提取网络和特征融合网络加以改进,并应用K-means聚类算法生成更适合交通标志的锚点框。充分利用多尺度特征实现了对小尺寸交通标志检测性能的提升。在TT100K (Tsinghua-Tencent 100K)和GTSDB (German Traffic Sign Detection Benchmark)交通标志数据集上进行实验,获得的mAP分别为82.73%和92.66%,运行时间分别为0.037 s和0.033 s。实验结果验证了改进网络的有效性,表明了改进网络的整体性能优于其他检测方法。