摘要

斜拉索是斜拉桥主要的支撑单元,是斜拉桥的重要组成部分.本文研究了控制增益参数G对索-梁耦合结构的振动控制.利用文献已得到的索-梁耦合结构的面内非线性运动微分方程,根据离散法,对其进行分离变量法处理,进而得到索-梁耦合结构的单自由度和两自由度模态方程.不同于以往的研究,本文假设索(梁)的左支撑点即坐标原点处是可以沿纵向方向自由移动的,则索的动态应变会发生改变,进而改变其模态方程一次项系数,通过这一规律可以在理论上转换得到一套状态控制反馈准则,并根据Floquet稳定性理论,将上述方程转换为Hill方程形式.然后通过摄动法,得到运动微分方程的稳定解.最后对索-梁耦合结构的单自由度和两自由度系统进行了数值分析计算,通过改变反馈控制增益系数,可以实现系统的反控制.而设计者可以通过这些复杂现象的参数变化范围设计选择合适的参数,尽量使得系统能在工程师所能控制的安全范围内振动.这种控制策略保持了系统的平衡,并且可以应用于在期望位置处具有最优稳定性的退化倍周期分岔.研究表示,无论结构是单自由度还是两自由度系统,反馈控制增益系数的变化能明显有效地改变系统的共振情形下的幅值.通过适当调整控制参数,能在预先指定的参数位置创建原系统的稳定倍周期运动,并能改变倍周期运动的范围.研究发现,控制增益参数G的常数项和一次项都对索-梁耦合系统的控制起着重要作用,说明假定的状态控制反馈准则在理论上具有一定的参考性.