摘要
为实现工业园区企业污染排放精细化管控,捕捉工业园区内企业污染排放与污染物浓度之间的响应关系,提出一种集成大气环境容量(AEC)和时空特征的工业园区PM2.5浓度预测模型.通过有限体积法获得工业园区日均大气自净能力指数(ASI),结合工业园区日排放数据作为AEC特征;同时利用小波分析和Pearson相关系数法提取时空特征,包括目标监测站PM2.5浓度的时间变化特征和其与周围监测点PM2.5的空间相关特征.通过CNN获取训练数据中PM2.5的关联特征,并利用BILSTM充分反映时间序列训练数据中隐含的关键历史长短期依赖关系,确保快速准确的预测性能,以2018~2020年濮阳市工业园区大气污染物观测数据、气象数据及排放数据进行实验验证.结果表明:本文提出的CNN-BILSTM预测模型相较于传统LSTM模型预测精度提升10%;AEC特征和时空特征有利于提高模型精度和稳定性,集成AEC和时空特征的CNN-BILSTM预测模型在PM2.5污染天数预测准确率最高,达93%;分季节预测结果表明,秋冬季的预测精度最高.
- 单位