摘要

蛋鸡产蛋率受生物、化学、物理以及人为等多方面因素影响,准确地预测蛋鸡产蛋率的变化趋势,建立蛋鸡的产蛋率预测模型对蛋鸡养殖具有重要的意义。将蛋鸡采食量、蛋鸡鸡龄、体质量、温度、光照时间以及是否服用营养素等6类影响因子进行处理,作为支持向量机(SVM)的输入数据,对蛋鸡的产蛋率进行预测,得到了一个稳定性好、适用范围广、预测结果准确的蛋鸡产蛋率模型,且预测结果符合蛋鸡的实际产蛋情况;同时为评估和分析SVM蛋鸡产蛋率预测模型的性能,以同样样本建立BP神经网络的预测模型,并用网络训练、测试用时、均方误差MSE以及相关系数r作为预测模型性能的评价指标。结果表明,基于支持向量机的蛋鸡产蛋率预测模型精度和耗时均优于神经网络预测模型。

全文