摘要

针对人工智能辅助骨折部位治疗时由于骨折部位通常伴随着出血等症状,不同体位所拍摄的CT影像存在较大差异,骨折部位大小不一,以及受到出血部位以及周围组织的干扰,骨折部位的特征提取不充分、骨折部位检测精度不高的问题,设计了一种3M-YOLOv5网络来检测下颌骨骨折部位。在特征提取网络中采用密集模块,利用密集连接特性提高网络的特征提取能力;采用局部全局注意力模块来提取CT影像的全局信息;构造一个轻量化的多尺度密集块,以较少的参数量提取骨折部位的多尺度特征;在特征增强网络中设计跨维度双向特征融合模块,使得特征图的高度、宽度以及通道之间有所交互,同时引入可训练的权重来平衡不同尺度特征图的融合重要性。为了验证3M-YOLOv5网络的有效性,在自建数据集上进行消融实验和对比实验。实验结果表明,在置信度阈值取0.5时,3M-YOLOv5网络的mAP值、F1值、召回率、精确率分别为99.17%,99.06%,98.81%和99.32%。所提出的下颌骨骨折CT影像检测网络能够较好地检测出影像中的骨折部位,辅助医生制定治疗方案。