为了充分利用实际工业过程中大量无标签数据中的信息,提出了一种基于改进自训练算法的高斯过程回归(GPR)软测量建模方法。首先,利用相似度估计无标签样本缺失的主导变量值;然后,根据估计值对有标签数据集的影响,对估计样本集中的数据进行筛选;最后,将泛化能力强的样本加入有标签样本集中,得到重构训练样本集并进行软测量建模。通过脱丁烷塔塔底丁烷浓度预测的仿真实验,验证了所提方法的可行性和有效性。