摘要

开放车间调度问题属于典型的NP-hard问题。目前的相关研究大多假设工序在机器上具有固定的加工时间。然而,在大多数现实生产场景中,机床的加工时间可以通过调节加工功率加以控制。同时优化完工时间和总能耗两个冲突目标对高效、节能的开放车间生产具有重要意义。为此,研究了可控加工时间的多目标开放车间调度问题(MOOSPCPT),以最小化完工时间和总额外能耗为目标构建了混合整数规划模型,并提出一种多目标混合进化算法(MOHEA)用于求解MOOSPCPT。在MOHEA中提出多个策略:1)改进生物地理学优化算法中的迁移策略和变异策略用于全局搜索,有效地提高了种群的多样性;2)基于关键路径设计一种自调整变邻域搜索策略,增强了算法的局部搜索能力;3)设计了一种加工时间重置算子,从而显著提升了算法的搜索效率。仿真实验结果表明:所提出的策略有效地提升了算法性能;相较于NSGA-Ⅱ(Non-dominated Sorting Genetic AlgorithmⅡ)、NSGA-Ⅲ(Non-dominated Sorting Genetic Algorithm Ⅲ)和SPEA2(Strength Pareto Evolutionary Algorithm 2),MOHEA能够更有效地解决MOOSPCPT。