考虑航艏向与数据变化差异的船舶轨迹预测

作者:高天航*; 徐力; 靳廉洁; 葛彪
来源:交通运输系统工程与信息, 2021, 21(01): 90-94.
DOI:10.16097/j.cnki.1009-6744.2021.01.014

摘要

船舶自动识别系统(Automatic Identify System,AIS)数据可以实时体现船舶当前时刻的具体动态,采用传统BP(Back Propagation)神经网络模型的船舶轨迹分析预测方法,在计算中直接将航艏向数据纳入模型,没有考虑船舶航艏向在零度附近变动时带来的实际方向变动幅度与数据变化幅度存在较大偏差问题。为解决该问题,在BP神经网络基础上,引入双三角函数变换,同时将正弦值与余弦值纳入模型,将两者相结合,从两维度体现航艏向情况;在拟合预测后进行反三角函数变换和平均处理,构建一种基于改进神经网络算法的船舶AIS轨迹预测模型。选取实例数据进行模型验证,实例结果表明,该模型预测结果比不考虑差异方法的误差均方差更小,大幅降低误差幅度,可更精确地预测船舶轨迹。

全文