自适应增益的SPGD算法

作者:方舟; 徐项项; 李鑫; 刘金龙; 杨慧珍*; 龚成龙
来源:红外与激光工程, 2020, 49(10): 27-33.

摘要

SPGD算法是一种应用广泛的无波前探测自适应光学控制算法。传统SPGD算法中增益系数保持某一固定值不变,随着变形镜单元数的增加,这将导致算法收敛速度变慢及陷入局部极值的概率增大。Adam优化器是深度学习常用的一种优化随机梯度下降算法,它具有增益系数自适应性调整的特点。将Adam优化器自适应调整增益系数的优势与SPGD算法结合起来用于自适应光学系统控制。分别以32、61、97、127单元变形镜作为波前校正器件,不同湍流强度的波前像差作为校正对象,建立了无波前探测自适应光学系统模型。结果表明,优化后的算法收敛速度更快,而且陷入局部极值的概率降低,并且随着变形镜单元数的增加与湍流强度的增大,算法的优势更加明显。以上研究结果为基于Adam优化的SPGD算法的实际应用提供了理论基础。