摘要

为了能够精确预测短期电价为市场参与者提供有效的决策指导,首先对电价数据进行水平处理,然后建立BP神经网络(BPNN)和最小二乘支持向量机(LSSVM)组合变权模型(BP LSSVM),同时提出采用遗传算法(GA)对该组合变权模型的权重进行优化,最后将权重优化之后的GA BP LSSVM模型应用于美国PJM电力市场的边际电价预测,并与传统的LSSVM与BPNN的预测结果进行比较,结果表明,该组合变权模型能够提供更加精确的预测电价。