摘要

针对多视密集匹配的效率较低的问题,提出了GPU-PatchMatch多视密集匹配算法。该算法使用GPU提高PatchMatch的计算效率;同时充分利用稀疏场景信息,对深度信息进行规则初始化;为提高传播效率,使用了金字塔红黑板并行传播深度信息。最后在DTU、Strecha和Vaihigen数据集上进行了试验,并与常用的多视密集匹配算法进行对比。试验结果表明,本文算法在重建效率上有较大提高,与CPU算法(PMVS、MVE、OpenMVS)相比有7倍以上提升,与GPU算法相比也有2.5倍以上提升,表明本文算法的有效性。