摘要
传统的基于自编码器的无监督领域自适应方法大多依靠单一的自编码器模型,故无法学习得到领域间的全局特征表示.针对该问题,提出一种基于串行自编码器(serial autoencoder unsupervised domain adaptation, SAUDA)的无监督领域自适应方法,以串行方式连接两种不同类型的自编码器学习更丰富的全局特征表示.利用堆叠自编码器(stacked autoencoder, SAE)对源域和目标域的特征进行初步学习;进一步地,采用稀疏自编码器(stacked sparse autoencoder, SSAE)对堆叠自编码器所得特征学习结果进行二次特征学习,以得到领域间更好的全局特征表示.结果表明,与传统的神经网络方法相比,基于SAUDA的无监督领域自适应方法在实验数据集上具有更好的跨领域分类性能.