为了给消费者信贷决策提供合理依据,基于真实的客户信贷数据,运用逐步Logistic回归方法依据AIC准则进行变量选择建立经典决策树、条件推断树、随机森林、支持向量机等分类模型,并对4个分类模型的预测结果进行比较。结果表明:基于逐步Logistic回归建立的随机森林分类模型准确率达97%,预测效果最优;随机森林算法具有较高的分类精度,可以很好地应用在个人信用评估问题研究中。