穿戴式跌倒检测中特征向量的提取和降维研究

作者:李雷; 张帆; 施化吉; 周从华
来源:计算机应用研究, 2019, 36(01): 103-114.
DOI:10.19734/j.issn.1001-3695.2017.07.0674

摘要

穿戴式跌倒检测中老年人特征属性过多会造成维数灾难,影响后续跌倒检测精度。针对此问题,首先采用时域分析法提取初始特征向量集,用提出的改进核主成分分析算法(IKPCA)对特征向量进行降维,从而获得优质的特征向量集,使得后续的分类具有更好的效果。IKPCA算法首先利用I-RELIEF算法对初始特征向量集进行特征选择,然后计算跌倒特征向量的信息度量和相似度度量;最后根据跌倒特征向量的相似度度量剔除无效的跌倒特征向量。IKPCA算法不但保持核主成分分析算法(KPCA)较好的降维能力,而且扩充了较好的分类能力。利用真实的数据集进行实验,对比分析表明,相比其他算法,IKPCA算法能够得到更优质的特征向量数据集。

全文