摘要
提出一类改进的粒子滤波算法.对于建议分布的选取方案,此算法采取强跟踪分散的卡尔曼滤波方式建立它的建议分布.由于线性调节参数,此算法让系统拥有更优越的自适应性及鲁棒性,对高机动目标具有更强的跟踪效果,继而为强跟踪扩展卡尔曼滤波的能力.仿真结论说明,此算法的性能比别的几类非线性滤波算法更加优秀.比如辅助粒子滤波器(APF)、迭代扩展卡尔曼粒子滤波器(IEKF-PF)、Unscented粒子滤波器(UPF)、正则化粒子滤波器(RPF),则是在bootstrap粒子滤波器提出之后,继而出现的改进的粒子滤波器0基于粒子滤波,本文提出了阻止粒子退化的两个重点原因,以及选取合适的采样建议分布及重采样算法.
- 单位