摘要

针对如何缓解跨模态行人重识别任务中行人模态之间的差异性问题,提出一种随机通道邻近数据增强方法RCNA和一种结合多维互信息的U型网络UMME。RCNA通过选取同类别的可见光图像和红外图像进行数据增强生成新的行人图像,既满足了真实数据分布,又融合了可见光图像的形状和结构信息以及红外图像的语义信息,缓解了可见光图像与红外图像之间的模态差异性。UMME通过互信息提取模块UMI提取同类别行人之间的互信息特征,再经过特征整合模块MSIF将互信息特征嵌入语义特征,增强了同类别行人之间语义特征的一致性。所提出的方法在数据集SYSU-MM01和RegDB上的Rank-1和mAP分别达到70.48%、68.34%和91.70%、88.42%,与现有研究方法相比,取得了优异的识别效果。

全文