摘要
基于乍得Bongor盆地花岗岩潜山油藏的钻录井、测井和试油资料,提出了一种新的储层有效渗透率计算方法,将试油结果转换为视有效渗透率来作为样本库的标签数据;以领域知识和机理模型驱动为主,机器学习为辅,建立特征曲线;采用XGBoost+KNN作为双重预测模型参与视有效渗透率计算,并利用SHAP值对模型进行了可解释性分析。研究结果表明:(1)将储层的测井视波阻抗和孔隙度作为渗透率指示曲线,分别与生产指数进行交会,从建模数据一致性指示交会图中挑选出19口井共26个有效井段,将试油结果转换为视渗透率(0.01~1 601.50 m D),共建立了51 348个深度点数据,14条输入曲线,基本覆盖主要潜山带,包含了不同岩性、不同储层品质和不同试油产量井段,使得整个样本库具有足够的代表性。(2)XGBoost模型充分利用了测井视波阻抗曲线、辅助表征潜山储层纵向分带特性的归一化垂深曲线、密度曲线、自然伽马窗口均值曲线、声波时差曲线、补偿中子测井曲线、视中子-密度孔隙度差窗口均值曲线、深浅电阻率曲线和自然伽马窗口标准差曲线信息,其计算结果与潜山储层品质的定性认识一致,预测精度较KNN模型更高。(3)乍得Bongor盆地花岗岩潜山油藏中有效渗透率大于1.00 mD的储层为有效储层,有效渗透率大于50.00 mD的储层为好储层,该方法的计算结果与试油结果一致。
- 单位