摘要

近红外光谱分析中,异常样本的存在严重影响定标模型的预测性能和适配性。基于X/Y联合的ODXY异常样本识别和剔除方法,提出并证明了一种专用于多组分分析的MODXY异常样本识别方法。实验采用80组玉米近红外光谱数据,利用不同异常样本识别方法剔除异常样本后建立玉米含水率、含油率、蛋白质含量和淀粉含量4种组分的偏最小二乘预测模型,采用预测均方差和决定系数作为评价指标比较所建模型的性能,检验MODXY方法在多组分分析中的异常样本识别能力。实验结果表明:在近红外多组分分析中,MODXY方法在大多数情况下具有更好的异常样本识别能力;MODXY方法和ODXY方法均有一定的适用范围,它们更适合于相应组分化学值的相对标准偏差较大的情况。