摘要
人脸活体检测技术作为人脸识别系统安全运行的重要保障,对保障网络空间安全意义重大.针对基于视频的人脸欺骗攻击,提出一种基于局部二值模式-多层离散余弦变换(local binary pattern and multilayer discrete cosine transform, LBP-MDCT)和卷积神经网络(convolutional neural network, CNN)融合的人脸活体检测算法.首先从检测视频中提取人脸图像;接着对人脸图像进行LBP和多层DCT变换以得到LBP-MDC T特征,将部分人脸图像输入CNN中以得到CNN特征;然后将两种特征分别输入到支持向量机(support vector machine, SVM)中得到分类结果;最后将SVM的输出进行决策级融合以判定检测视频的合法性.在Replay-Attack和CASIA-FASD数据库上的实验结果表明,相对于现有算法,该算法的检测性能更加优越.
- 单位