摘要

针对复杂环境下行人目标因检测器漏检和频繁遮挡而导致的数据关联不正确、跟踪实时性差的问题,提出了一种基于免锚检测的多目标跟踪算法。算法采用预测目标中心点热力图的方法实现目标检测定位,改善了因锚点框回归歧义所导致的漏检问题。同时在检测模型中嵌入深度表观特征提取分支,构建联合检测与跟踪的多任务网络用于提升实时性。为解决跟踪阶段行人因遮挡而引起的数据关联错误和轨迹丢失问题,提出加权多特征融合的相似性度量算法,综合多种关键特征评估检测与轨迹的匹配程度,显著提升数据关联正确性;提出基于存活期的跟踪状态更新方法,有效找回丢失轨迹提升跟踪鲁棒性。在MOT数据集上对跟踪性能进行测试,实验结果表明,算法能够有效应对遮挡并实现长时间稳定跟踪,兼顾了实时性与准确性。