摘要

以"拍拍贷"网贷平台的电商借贷者数据为样本,以违约鉴别能力为准则,采用神经网络判别法和相关分析法对指标进行筛选,构建电商网贷的信用评级指标体系。同时,基于各指标的违约贡献率和AHP方法,采用主观和客观相结合的组合赋权法确定各指标的权重系数。在此基础上,基于时间帧测度电商网贷者的近期信用和长期信用,构建电商网贷动态信用评级模型。该信用评级模型可根据近期信用动态调整长期信用,及时更新用户的信用状况。研究表明,构建的电商网贷信用评级指标体系违约鉴别能力强,历史信息的重要度超过了借款信息、认证信息和个人信息,长期信用将违约样本的信用等级降低,有效降低了信用风险。