摘要
针对车速、车身侧倾角和前轮转角变化较大工况下的非同轴两轮机器人在基于前轮转角的自平衡控制中,因动力学模型准确性对自平衡控制带来的影响,设计了基于RBF神经网络模糊滑模控制的自平衡控制器,利用RBF神经网络的逼近特性,对动力学模型中非线性时变的不确定部分进行自适应逼近,从而提高动力学模型的准确性,并借助模糊规则削弱滑模控制中产生的系统抖振;以及因前轮转角用于自平衡控制中难以实现转向闭环控制,建立了基于纯跟踪法的轨迹跟踪控制器,并设计利用车身平衡时车身侧倾角与前轮转角的耦合关系,将转向闭环控制中的目标前轮转角替换为目标车身侧倾角,从而将自平衡控制器与轨迹跟踪控制器相结合,在保证车身平衡行驶的前提下,实现带有轨迹跟踪的转向闭环控制。实验结果表明,凭借动力学模型的较高准确性,RBF神经网络模糊滑模自平衡控制器具有鲁棒性好、超调量低和响应迅速的优点,并且利用车身平衡后车身侧倾角与前轮转角耦合关系,实现转向闭环控制是可行的,具有良好的轨迹跟踪效果。
- 单位