摘要
提出了一种新的基于核函数的非线性系统辨识方法。该方法无须知道系统输入输出先验信息,首先对系统输入输出数据进行密度估计及聚类,自适应获取该数据隐含的类别数目及对应的核参数,得到系统的结构。进而利用这些核,将系统原始低维输入输出数据映射到高维空间获取新的输入输出数据,然后通过递归最小二乘方法获取系统的参数。仿真结果表明了该方法的有效性和自适应性。
-
单位中国航天科工集团公司; 中国科学院; 中国科学院声学研究所
提出了一种新的基于核函数的非线性系统辨识方法。该方法无须知道系统输入输出先验信息,首先对系统输入输出数据进行密度估计及聚类,自适应获取该数据隐含的类别数目及对应的核参数,得到系统的结构。进而利用这些核,将系统原始低维输入输出数据映射到高维空间获取新的输入输出数据,然后通过递归最小二乘方法获取系统的参数。仿真结果表明了该方法的有效性和自适应性。