基于DBSCAN的自适应GSA算法研究

作者:秦岭; 陶文雯
来源:微电子学与计算机, 2016, 33(12): 62-70.
DOI:10.19304/j.cnki.issn1000-7180.2016.12.014

摘要

在万有引力搜索算法(GSA)的基础上,提出了基于DBSCAN的自适应万有引力搜索算法(DBAGSA).算法在首次迭代过程中先通过聚类将种群划分对初始种群进行预处理,然后各子群中的个体再根据其适应度值和引力常数更新自己的速度、位置和引力质量值,并以自适应的方式更新最优解的信息.通过聚类和自适应的方式提高万有引力搜索算法的搜索能力和收敛速度,并有效平衡其群居探测能力及局部搜索能力.实验结果表明,改进后的万有引力搜索算法与标准GSA算法相比,收敛速度更快而且收敛精度更高.

全文