提出了一种选择性催化还原(SCR)烟气脱硝预测控制方法,该方法采用粒子群寻优的径向基(RBF)神经网络预测SCR脱硝系统入口NOx质量浓度,将整体寻优空间离散化,通过采用节点寻优并结合最速梯度方法重构寻优模型,同时将该RBF神经网络预测结果引入脱硝控制策略,应用到火电机组的喷氨控制。在某350 MW机组实际应用结果表明,该神经网络模型不仅能实现喷氨自动控制,而且能提高喷氨系统控制精度。